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Three-dimensional wetting revisited
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Department of Mathematics, Imperial College, London SW7 2BZ, UK

Received 23 July 1996

Abstract. We review progress made towards resolving long-standing problems associated
with the theory of wetting transitions in three-dimensional systems with short-ranged forces
(corresponding to the marginal dimension). We begin by emphasizing the importance of
two seemingly unrelated problems faced by the standard (capillary-wave) effective interfacial
Hamiltonian model:

(a) the discrepancy with the results of Monte Carlo simulation studies of the critical wetting
transition in the Ising model which do not reveal any of the predicted non-universal behaviour;

(b) the failure of the interfacial model to describe the structure of correlation functions (at
the wall) known from mean-field studies of the complete wetting transition.

Recent work suggests that these problems may be overcome by introducing new effective
Hamiltonians which improve on the capillary-wave model and lead to novel fluctuation effects
in d = 3. The new models follow directly from the development of much improved systematic
techniques concerning their derivation and justification initiated by Fisher and Jin. These workers
emphasized the importance of allowing for the position dependence of the stiffness coefficient
and showed that it may drive a (bare) critical wetting transition first order. This has been further
developed by Parry, Boulter and co-workers who argue that it is essential to model the coupling
of order-parameter fluctuations at the wall and interface and show how this resolves problem (b).
The coupled Hamiltonian also leads to new predictions for fluctuation effeafs=n3 which
are in good agreement with more recent Ising model simulations by Binder and co-workers as
well as providing a likely explanation for problem (a).

1. Introduction

Effective interfacial models are widely used in condensed-matter physics to describe the
large-scale fluctuations that occur near the surface or interface separating different bulk
regions. Such models have played a central role in developing equilibrium theories of
roughening (see, e.g., [1]) and wetting phase transitions [2, 3] and also non-equilibrium
phenomena involving driven interfaces [4]. Common to all these models is the use of a
collective coordinaté(y) to represent the position or height of the interface with respect
to some plane. Of course the models are not truly microscopic but are usually considered
valid for length scales larger than some appropriate cut-off (such as a lattice spacing or bulk
correlation length). The prevailing belief is that interfacial models may be derived from
more microscopic approaches if the degrees of freedom up to the cut-off are integrated out.
Needless to say this is an extremely difficult task and all interfacial models retain a partly
phenomenological status. In this article we review work aimed at resolving some long-
standing problems associated with the effective interfacial Hamiltonian theory of wetting
transitions in three-dimensional systems with short-ranged forces (corresponding to the
marginal or upper critical dimension). In particular we wish to present a unified account
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of recent theoretical developments concerning the derivation and justification of interfacial
models. These lead to a number of new predictions for observable fluctuation effects which
may be favourably compared with recent Ising model simulation studies and which also
provide a likely explanation of older problems.

To begin, we recall the basic phenomenology of continuous wetting transitions and end
by stating two problems faced by the standard (capillary-wave (CW)) interfacial approach
which have provided motivation for the continued development of theory. These will also
serve as benchmarks by which we may gauge the success of improved models. Consider,
then, a system showing bulk phase coexistence between fluid phases dereotd@ at
subcritical temperature¥ < T.. In keeping with the rest of our article we shall adopt a
magnetic notation and denote the local order parameteny. Thus in addition to the
temperature we also specify a bulk ordering (magnetic) fielthd suppose that the stable
bulk phase corresponds to order parametgr> 0 for # > 0 andmg < 0 for i < O.

Now consider the system in contact with a planar wall situated inztkeO plane which
provides an additional surface fielgh acting on the local surface layer. If the surface
field i1 is strong enough, a thin film at-phase may intrude between the wall and bulk
B-phase (assuming th&t < 0). However, in the limit: — 0~ (corresponding to two-
phase coexistence) the thicknéssf the adsorbed film may either remain finite or diverge
depending on the temperature and surface field. A section of a surface phase diagram (for
constant temperatur€) showing two continuous wetting transitions is given in figure 1.
The critical wetting transition refers to the divergencd ek, — 1y andh — 0~. There

are two relevant scaling fields correspondingste= (hy — hi1)/hY and h. Equally we

may consider the transition induced by temperature for a fixed surface field with a suitably
defined scaling variable= (T, — T)/T,, (with T,, the wetting temperature). The complete
wetting transition on the other hand refers to the divergendeasf: — 0~ for i1 > A} or
equivalentlyT > T,, and there is only one scaling field. Associated with the divergence of

[ for each transition is the growth of large fluctuations characterized by perpendicular and
transverse correlation lengths denoggdandé, respectively. This is shown schematically

in figure 2. With each transition we may also define a singular contribution to the excess
surface free energy per unit area or surface tension [5] of the pvaliterface as

Uwﬂ = Oy + Uaﬂ + fsing (11)

whereo,, is the corresponding wakk-phase excess free energy (evaluated at0™) and
oqp 1S the freex—p surface tension. The critical exponents for the critical wetting transition
are defined as

[~ t_ﬂx gll ~ %_J_ ~p fsing ~ t2—a.,- (12)

where for the time being we consider only= 0~. Similarly for the complete wetting
transition we write

1~ |h| P g~ |h|™" £~ || ™Y Fsing ~ 1HZ7%". (1.3)

The critical exponents (for each transition) are not independent but the existing exponent
relations will not be quoted here [2,3]. A suitable microscopic starting point for the
calculation of the critical singularities modelling (surface) phase coexistence in systems
with short-ranged (contact) forces is the Landau—Ginzburg-—Wilson (LGW) Hamiltonian [6]

Higw[m(r)] = / dy /O dz [3(Vm)® + ¢ (m(r)) + 8(2)p(m(r)] (1.4
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Figure 1. Section of the surface phase diagram at consfanflong the cut in the: = 0 axis
for hy > hY the wall-g interface is completely wetted by thephase. Critical and complete
wetting transitions refer to the continuous divergence (@nd other length scales) ag — iy,

h — 0~ andh — 0~ for hy > hy, respectively.

B

EW
IR0

Figure 2. Schematic representation of interfacial fluctuations near a wall showing transverse
and perpendicular correlation lengths.

where¢ and¢, are the appropriate bulk and surface energy densities. The standard choice
for ¢4 is
2

$1(m) = % — hym (1.5)

wherec is the surface enhancement parameter. The bulk energy densis the usual
double-well form forT < T, but will not be specified further. Unfortunately it is not possible

to study (1.4) except in the mean-field (MF) approximation which ignores fluctuation effects.
Minimizing (1.4) with respect tan(r) yields the MF magnetization profile(z) and free-
energy from which it is straightforward to calculate the surface phase diagram [6]. For our
purposes we note only that for> « sections of the phase diagram are of the form sketched
in figure 1 with the wetting surface field (and temperature) determined by the relation

hy = cmg h=0. (1.6)

Here « is the inverse correlation length of the bulkphase. Forc < « the wetting
transition is first order so thdtjumps discontinuously from a finite to infinite value at the
phase boundary. We shall not discuss this possibility further. Using MF theory it is also



10764 A O Parry

straightforward to extract the critical exponents. For the critical wetting transition these are
given by

il ~Intt g ~tt foing ~ 12 (1.7)
For the complete wetting transition the critical singularities are
il ~ In |k g ~ |h|72 fuing ~ RN |A| (1.8)

where the form off;,, will turn out to be of some significance. Note that, in order to
determine the transverse correlation length it is necessary to consider the connected
correlation function

G(ry, m2) = (m(rym(rz)) — (m(ry))(m(r2)) (1.9
and its transverse Fourier transform
G(z1,22; Q) = /dylzeXD(iQ'ylz)G(Tl, 72) (1.109)
=) 0%Ga(z1,222  Q—0 (1.1()
n=0

wherey is the parallel displacement of the pointsandr,. Equation (1.18) defines the
moment expansion of the correlation function. Using standard techniques (see, e.g., [7, 8])
the form of G is easily found for positions;, z, near thew—8 interface:
Efm' (z)m’ (z)

1+ Q2%

The simple Lorentzian character of (1.11), which is equally applicable to critical and
to complete wetting transitions, is of the expected form consistent with the interpretation
that fluctuations about the MF profile are dominated by long-wavelength distortions in the
position of thex—4 interface (recall figure 2).

Substitution of the MF critical exponents into the hyperscaling relations [7:92=
(d -1y, and 2— o’ = (d — DHp® determines the marginal dimension for each transition,
yielding d* = d, = 3. It is therefore possible that fluctuations alter the MF values of
the critical exponents i = 3. Note that, for systems with long-ranged forces, similar
considerations show that MF treatments should suffice in three dimensions [2]. As a
preliminary remark we recall that a well known defect of MF theory is its inability to
describe the divergence 6f as&; — oo in d < 3 (see, e.g., [10]). In particular A = 3
we expect the widttg, of the true equilibrium magnetization profile to satisfy (see, e.g.,
[10])

G(z1,22; Q) x (1.112)

(kE1)% ~ wIn(cE))? (1.12)
where we have defined the wetting parameieas [11]
w =kpTk?/dr Typ (1.13)

which will play a central role in our discussion. HeB&yg corresponds to the stiffness
coefficient of the freex—g interface. For isotropic continuum models this can be identified
with the tensions,g but for models defined on a lattice it also depends on the curvature of
the surface tension with respect to angular orientation [12]. Of course for lattice models in
d = 3 we need to specify that the temperature is greater than the roughening temperature
so that the interface is fluid like. We shall assume that the temperature dependerces of
and X,z can be found using other methods so that the value @r a givenT is known
[11,13].
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In the absence of any systematic technique for analysing three-dimensional models of
wetting beyond the MF approximation (other than by simulation) we are forced to study
effective Hamiltonian models to determine the non-classical behaviour. The standard CW
model which has formed the basis for the general fluctuation theory of wetting is given by
[2,3]

Hewll(y)] = f dy (Egﬁ (VD)? + W(l(y))) (1.14)

where W(l) is the binding potential. As is apparent the essential assumption of the
CW model is that fluctuations in the position of the-8 interface (described by the
collective coordinatd (y)) determine the extent to which the critical singularities of the
wetting transition are MF like or not. These latter singularities are controlled by the
binding potential which may be regarded as a direct or bare interaction betweesn-the

B interface and wall. We shall not comment on the older arguments given for the model
since a more systematic theory will be presented in section 2. The model is best regarded
as a plausible phenomenological starting point for the investigation of long-wavelength
interfacial fluctuations. Therefore, implicit in the model is a high-momentum cut-off which
limits the fluctuations to length scales much greater than the bulk correlation length. Thus
in d = 3 we specify the cut-off byA < (Z.4/kpT)Y?. To proceed we need to specify the
form of the binding potential. For systems with short-ranged forces the standard expression
is [7,14,15]

W(l) = hl — T exp(—«l) + b exp(—2«]) (1.15)

together with a hard-wall contribution which limits the configurationd () > 0. Here

T o t, h « |h| andb is necessarily positive nedt, and may be regarded as a constant.
Again we postpone a discussion of the justification of (1.15) until section 2 where we
develop a more general approach. For dimensibns 3 the specific form ofW is not
essential because the critical singularities are controlled by the universal properties of a
fixed-point Hamiltonian [16]. Thus id = 2 approximatingW (/) by a square well potential
(with a hard-wall forl < 0) generates the same universal critical exponents for the critical
wetting transition as that found in the exact Ising model solution due to Abraham [17] (see,
e.g., [3]) Bs = v, =1, v =2 anda, = 0). However, ford = 3 the precise structure

of W(l) is essential because there is no non-trivial fixed-point Hamiltonian [16]. Before
we quote the renormalization group (RG) results foe= 3 we note that, if we ignore
fluctuations and simply minimizé&V (I) with respect ta, we recover the MF expressions

for I and f;;,, quoted in equations (1.7) and (1.8). Similarly, if we consider Gaussian
fluctuations about the MF positidiy, z, we may calculate the structure factor

S(Q) = / (81(y1)81(y2)) €92 dy, (1.16)

wheresl(y) = I(y) — Iy r. Thus we find that
kgT

W (Iyr) + Zop Q2

from which we may identif;&H2 = Xqp/W”, recovering the MF resultsS(Q) has the simple

Lorentzian form typical of order-parameter correlation neardhg interface. Indeed, if

we assume that small fluctuationsdhsimply translate the MF profile, we are led to the
prediction (see, e.g., [18])

G(z1,22; Q) ~ m'(z1)m'(z2)S(Q) (1.18)

S(0) = (1.17)
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for z1, z2 ~ Iy r Which is essentially identical with the explicit MF result. In section 2 we
shall see that it is possible to make such identifications precisely correct for arhitrapy
using a generalized effective Hamiltonian approach.

In d = 3, RG calculations due to Brezigt al [14] and Lipowskyet al [15] (see also
Fisher and Huse [19]) predict that the critical behaviour is non-universal depending on the
value of the wetting parameter. For critical wetting the results are particularly dramatic.
For example the correlation length critical exponent is given by

() 0<w<1/2
V=1 (vV2 - V)™ 12 <w<2 (1.19)
[%e) w>2

where the last regime correspondssjo~ exp(constant—1). The three regimes arise from

the competition between the renormalized exponential term& () and the renormalized
hard-wall contribution. We also note that for the first two regimes the wetting film still
grows logarithmically and the wetting temperature is unaltered. For the complete wetting
transition the non-universality is less dramatic and the critical exponents remain MF like
(le. v = %). Nevertheless critical amplitudes aiedependent. For example the mean

interface position grows as
ikl ~ 6ewIn|h| ™t (1.20)

with 6cw = 14+ w/2 for w < 2. All these predictions recover the MF expressions if we set

o = 0 (corresponding to infinite stiffness) which suppresses fluctuations. Whilst the RG

analysis leading to these predictions is an approximate linear functional theory, the results

are believed to be exact for this choice of binding potential (at least for the physically

relevant regimev < 2 where the renormalization of the hard wall is not all important [20]).
The three-dimensional semi-infinite Ising model is the simplest available microscopic

model which may be simulated to test these predictions. As mentioned above, the only

proviso that we should stipulate is that the temperatures simulated should exceed the

roughening temperaturg; (which is about 4T, for the simple-cubic lattice). The values

of the wetting parameter as a function of temperature are now known accurately from

independent studies [11,13]. In fact for all temperatures in the rdpge T > 0.67. we

expectw ~ 0.8, leading to the predictiom; ~ 3.7 for the critical wetting transition. We

now meet our first problem.

Problem 1 Extensive Monte Carlo (MC) simulation studies by Binder, Landau and co-
workers [21-23] appear to show that the critical exponents for the critical wetting transition
are MF like. Specifically these workers study two wetting transitions occurring near
0.67, and Q97, (corresponding to different choices of the surface field) and establish
the divergence of the surface susceptibility = dm,/0h, wherem; is the surface layer
magnetization. According to scaling expectatiogsshould behave as

x1~ T EPIX () (1.21)

where g, = 0 (assuming thaiv < 2) and the gap exponef = 2v;. Hence along the
critical isotherm(r = 0, h — 0) we anticipate that, ~ |#|~%/?". Contrary to the CW
predictions the Ising model MC data are very well fitted by the MF regul |1|~1/2.

Whilst the discrepancy between CW theory and Ising model simulations provoked much
discussion [24-32], no substantial progress was made until Fisher and Jin (FJ) [33-37]
reassessed the status of the CW model and proposed a novel explanation of the problem.
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In retrospect, however, there is more to the problem of three-dimensional wetting than
the above and the FJ analysis should be regarded as an important step towards a fuller
description of fluctuation effects rather than an end in itself. We shall also emphasize the
significance of a seemingly unrelated problem.

Problem 2 MF studies of correlation functions at the complete wetting transition [38—40]
reveal intriguing features for particle positions near the wall which cannot be described
using the CW model (or for that matter using the amended model proposed by FJ). For the
LGW model the MF solution foiG (0, 0; Q) is [40]

kB Tm’lz
(c +kmZ + Q?[0yy — ¢p1(m1) + (Gup + fiing) /(L + QD]

wherem is the gradient of the magnetization profile at the wall. Near complete wetting, the
local inhomogeneity inn(z) near the wall is rather similar to that occurring at the wall—
interface andn; may be regarded as a constant in the above expression.

Interestingly the wavevector dependence shows strong crossover behaviour depending
on the scaling variablee = Q&. For x — 0 the effective coefficient 0f@? in the
denominator is the full excess free energy of the walkterface. Thus the second moment
G»(0, 0) appearing in the wavevector expansionfdepends not only on surface tension
of the o, interface but also the singular contributigi,,,:

G(0,0; Q) ~ (1.22)

GZ(O, O) X Oyo + Oup + fsing - ¢l(m1)
= Uwﬂ - ¢l(ml)~ (123)

For obvious reasons we refer to— 0 as the coherent limit. On the other hand, in
the limit x — oo, G(0, 0; Q) reduces to the wall- interface correlation function (which
may be regarded as the intrinsic behaviour). The manifest non-Lorentzian form of (1.22)
contrasts with that for particle positions near thes interface.

These remarks conclude our introduction concerning the problems of CW theory. In
section 2 we present an account of recent developments in generalized effective Hamiltonian
theory beginning with the theory of FJ and the derivation of a position-dependent stiffness
coefficient. Then, following the work of Parry and Boulter (PB) [41-45] we show how a
precise connection can be made with the MF correlation fundfian, z»; Q) if we further
generalize the FJ analysis. This naturally leads to the introduction of a two-field Hamiltonian
Hy[11, 5] which describes the coupling of order-parameter fluctuations at the walkand
B interface. This theory elegantly solves problem 2 described above and also leads to a
number of new relations, notably the stiffness-matrix—free-energy relation [45] and also a
class of correlation function identities [46]. RG analysis of the FJ and two-field models
leads to a number of new predictions for fluctuation effectd s 3. In particular the FJ
model suggests [34, 36] that the bare critical wetting transition is of a fluctuation-induced
first-order nature for sufficiently small values of In addition the two-field theory predicts
that the effective value of the wetting parameter is renormalized at the complete wetting
transition, implying that measurable critical amplitudes are different from those predicted
by the CW and FJ theories [42,44,47,48]. The model also suggests that the singularities
characterizing local observables at the wall at a critical wetting transition are weaker than
those of observables local to thes interface [49]. These ideas are made more quantitative
in a slightly improved coupled model which is better suited to describing crossover effects
for complete wetting neaf,,. In particular a reanalysis of the Ginzburg criterion for the
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local susceptibilityy; at critical wetting [50] provides a quantitative explanation of the Ising
model simulation results leading to problem 1.

In section 3 we review the results of Ising model simulation studies of phase coexistence
and critically in a confined system with competing surface fields [51-54] recently reported by
Binderet al [55-57]. This is a different geometry from the original simulation studies [21-
23] and in many ways is better suited to analysing wetting properties. The new simulations
provide independent confirmation of the wetting parameter renormalization effect predicted
by the coupled theory and also allow a measurement of the wetting parametexcellent
agreement with theoretical expectations.

We conclude with a brief summary and make some final remarks.

2. Generalized effective Hamiltonian theory

2.1. The position-dependent stiffness

FJ begin their analysis by emphasizing the need to define carefully the collective coordinate
[(y). They propose two definitions: a crossing criterion (CC) in wHi@)) is defined as

the position of the surface of fixed magnetizatiati and also integral criteria involving
moments of the magnetization profile. Both approaches lead to similar conclusions although
the CC is much easier to handle and will be the only one considered here. In their original
calculation, FJ set:® = 0 but following the subsequent analysis of PB we keep the value
arbitrary. The generalized effective Hamiltonian for the surface of fixed magnetization is
defined as

—Hpy[l(y); m*] , —Hpgw[m(r)]
=T e 2.1
exp( T r'|exp kT (2.1)
where the prime denotes that the partial trace over configuratigns respects the CC:
m(r = ((y),y)) =m". (2.2)

Next FJ suppose that for a given collective coordinate distribution all other fluctuations
are small, leading to

Hpyll(y); m*] = Hrgwlmz(r; [(y))] (2.3)

wheremgz is the magnetization distribution which minimizés ¢y subject to the CC (2.2).

In fact for most purposes it is enough to consider the properties of the planar constrained
profile m, (z; I) satisfying a standard Euler—Lagrange equation together with an appropriate
boundary condition including the CC (2.2). In this way, FJ derive

Y(; m*
Hp;[l(y); m*] = /dy |:(2)
where we have ignored curvature termév®) which do not play any role with regard to
determining critical properties [58]. The binding potential and position-dependent stiffness
coefficient for the surface of fixed magnetizatian are given by the formulae

(VD> + W(l; m*)} (2.4)

© /1 (amy \
W(l; m*) =/ dz<2< ;n ) +¢>(mn(z;l))> + ¢1(m7(0; 1)) (2.5)
0 Z

and
00 amn 2
S(lm) = / d: ((z; z)) 2.6)
0 al
= Yo + AX(; m") (2.7)
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where X4 is the MF surface stiffness for the free- interface andAX — 0 as! — oo
(provided thatmn, > m* > mg). We now follow FJ and sek* = 0 so that the surface of
fixed magnetization is local to the-3 interface. The expansion of the binding potential is
rather similar to the expression quoted earlier but A% term is new. FJ derive

AX(;0) = —texp(—«kl) — gl exp(—2«l) + - - - (2.8)

wheregq is a positive constant nedt,.
The linear RG analysis of the FJ model is a little more complicated than the CW model
because the RG flow equations farx and W are coupled. Nevertheless FJ show that an

appropriate effective binding potentit., (/) given by

o
Werr

satisfies the same diffusion-type equation familiar from the CW model analysis of Fisher
and Huse [19] (where is the infinitesimal rescaling parameter) and shows the mixing of
the binding potential and stiffness under renormalization«as 0. FJ point out that the

next to leading-order term in (2.9) (for largé® is negative owing to the second term in
(2.8). In this way, FJ argue that the bare (MF) critical transition is of a fluctuation-induced
first-order nature for sufficiently small values of < w*, wherew* is estimated to be in

the range% < w* < 1. Forw > o* the transition is second order with the same critical
exponents as the CW model. FJ suggest that the solution to problem 1 might be that the
actual Ising model wetting transition observed by Bindéral [21-23] corresponds to a
very weak first-order transition (although there appears to be no direct signature of this in
the data). However, the FJ analysis is still not able to provide a quantitative explanation of
why the susceptibilityy; measured in the simulations is MF like. For this reason and also
problem 2 (which we turn to next) it is probably best to regard the FJ analysis as a first
step towards a better theory.

2
) =wP;0) + ‘;%[1 —exp(—2n)]AZD(; 0) (2.9)

2.2. Correlations and the stiffness matrix

The systematic structure of the FJ theory allows a precise connection to be made with
the MF correlation functions of the LGW theory previously studied using standard (and
somewhat cumbersome) techniques. Following PB, consider the continuous set of FJ
Hamiltonians{Hr,[I(y); m*]} by allowing all possible choices of* belonging to the
range of magnetizations, > m* > mg seen in the MF profilen(z). For a given surface
of fixed magnetizatiom:* the corresponding equilibrium valueof the collective coordinate
satisfiesm® = m(z). Similarly one may envisage a set of structure fac{#&; z)} for
all possible valueg > 0 whereS(Q; z) has the standard definition (1.16) and is specific
to the surface of fixed magnetizatien® = m(z). Assuming that the fluctuations are small,
we readily derive

kgT

S D) = G m@) + 025 @ m()
where W” is the second derivative oV with respect to/ evaluated at equilibrium. It
transpires that there is a remarkable relation between tH6@&@t z)} and the MF correlation
function G(z, z; Q). To see this, first consider the set of zeroth momésite; z)}. It can
be shown that for fixed the exact analytic MF expression fafy(z, z) can be recovered
according to the rule

(2.10)

. 2
Go(z,2)= maX(an/lna(lZ’l)> S(O, Z/) (211)

=7
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=m'(2)?S(0; 2). (2.12)

The final identification turns out to be correct to ordef (although we have to stop
here for the model (2.4)), i.e.

G(z,z; Q) = m'(2)2S(Q; 2). (2.13)

Thus to recover the correlation functi@n(z, z; Q) for a particular; we need to choose the
appropriate HamiltoniarHg; with m* = m(z). These remarks make it clear why the FJ
model withm* = 0 (and hence the CW model) fail to describe the wall correlation function
since the choice of:* is entirely inappropriate.

PB next consider the properties of the set of two-field mof&lg!;, Io; m7, m3]} where
each element denotes the effective Hamiltonian for two surfaces of fixed magnetizafions
andm3 described by the pair of collective coordinatgsand/,. Assuming that, > /1, it
is straightforward to derive the coupled Hamiltonian

Hally, o] = / Ayl S, (10, 1)V, - Vi, + Walls. 1] (2.14)

where for simplicity we have dropped the expligit, m3 dependence. Note that i,
constitute the elements of a symmetric stiffness mafixExplicit expressions foE and W,
may be found in terms of the doubly constrained planar prefif(z; /1, l;). Connection
with MF correlations is made through a set of structure factor matf8ég; z1, z2)} where
71, Z2 denote the MF positions of the surfaces of fixed magnetizatiopsn;. Here

. _ | 511005 21, 22)  $12(0Q;5 21, 22)
S(Qi 2,22 = [Slz(Q; 71,22)  S22(0; 21, Zz)} (2.15)

where by analogy with (1.16) we have defined

S(Q; 71,22) = fdylzeXP(iQ'ylz)(r?lu(yl)Slv(yz)% (2.16)
These are easily calculated using the relation [44]
-1 0f 2
STH(Qiz1,72) = | o3 oF (Wt 0B (2.17)
812 a22

whereaiv = 92/(d1, d1,) and is evaluated at equilibrium. From the matrix elements, one
can recover the MF expression for three different correlation functions using

G(Z;u 70 Q) = m,(Zu)m/(ZU)S;w(Q; 21, 22). (2.18)

This turns out to be a rather useful formulation (at MF level and beyond). We now specialize
to the complete wetting transition and choos® = 0 andmj ~ m1 so thatl, and/; are
representative of surfaces of fixed magnetization that unbind or remain bound to the wall as
h — 0~. This allows us to address problem 2 mentioned in the introduction. Noting that
the fluctuations of the lower surface are always small, the binding potential may be written

ri?
Wa(ly, lo; mq, 0) ~ 71 + W(l21) (2.19)

whereW (l1) (with Iy; = I —1;) is similar to the phenomenological result (1.15) and 0.
Thus at the wall we derive
kB Tm’lz

G(0,0; Q) =
OO = 0+ B+ 25/ 02D

(2.20)
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which is the desired form. Note that t1¥&,, satisfy a stiffness-matrix—free-energy relation
[44]

Y (0, 22) = oup — pa(m) (2.21)
'Ry

which ensures that the sum rule (1.23) is exactly obeyed. In fact this relation simplifies
further because the leading-order decay3fis provided by the off-diagonal element
Y12 ~ lp1 exp(—«ly), leading to the remarkable relation

2%12(0, 22) & fing (2.22)

and recall that the arguments O andrefer to the mean positions & and/,. Thus the
coupling of fluctuations is essential in order to understand the singular@ @, 0). Note
that the decay ok, is precisely of the form required to recover the free-energy singularity
hin(h) and is longer ranged than the FJ stiffness. Needless to say the formalism also
recovers the simple Lorentzian structure(hear thew—g interface and in addition allows
the calculation ofG (0, z; Q) which also shows strong crossover behaviour [44].

To conclude our discussion of MF correlations we mention that by considering the
properties of the set of three-field HamiltoniafiHs[- - -]} it is possible to derive two
new identities forG(zy, zo; Q). These are in fact applicable to the LGW model of fluid
confinement between two planar walls with arbitrary surface fields and include the present
semi-infinite system as a special case. We simply quote the results [46]

G(z1, 22 Q)G (22, 23; Q) = G(z1, 23; Q)G (22, 22 Q) (2.23)
and
m'(z2)Go(z1, 1) — m'(z21)Go(z1, 22) ~ m'(22)Go(z1, z3) — m'(21) Go(z2, 23)

m'(z2)Go(z1, z3) — m'(z3)Go(z1, 22) M’ (22)Go(z3, 23) — m’'(z3)Go(z2, 23)
valid Vz; < z2 < z3.

(2.24)

2.3. RG theory of coupling effects

We begin by discussing the complete wetting transition since the modelling of the coupling
of fluctuation effects is easier for this case. To see the essential influence of coupling on
the critical singularities it is sufficient to consider the Hamiltonian [42]

211 2 Eaﬂ 2 rlf -
Hz[l]_, 12] = /d’y |:2(Vll) + 2 (Vi) + 7 +hloy—1 eX[X—K121):| (225)
where (for the moment) we have ignored the position dependencE,pfand have
approximated:;; = o, — ¢1(m1). This is the simplest model which accounts for order-
parameter fluctuations near the wall ands interface. Recall that the CW theory predicts
that the critical amplitud® characterizing the divergence of the film thicknes®dg =
1+w/2. This result is unchanged in the FJ model. However, linear [44] and non-linear [48]
functional RG analyses of the two-field model show that the effective valuei®fncreased
owing to the coupling of fluctuations. Consequently the critical amplitude given by

1 kBTl(z ]

=1+ — |:a) + 2.26
2 ArE11(1+ (A1kua)2) ( )

whereé&,, = /X11/r is the transverse correlation length of the intrinsic walihterface

and A, is the momentum cut-off for the lower surface satisfyiig < /Z11/kgT. Within

the two-field theory described above, it is difficult to estimate precisely the increment to

the CW expressiofAcw but PB argue that fok; > kY or equivalentlyT >»> T, the value
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appropriate to the Ising model (assuming that 0.8) should b&y ~ 1.8 compared with
Ocw ~ 1.4. Subsequently Parrgt al [47] have argued that, as the temperature is lowered
towardsT,, the incremental term i@ should vanish so that

lim 6 =1+ % (2.27)

T—T};

w

This may be viewed as resulting from the decoupling of modes at the walt-ghihterface
associated with the vanishing of the local stiffness-matrix elerignt~ 72 ast — 0.

It is possible to extend these ideas and to develop a more quantitative theory of the
coupling effects neaf,,. This involves modelling the order-parameter fluctuations near the
wall in a slightly different way using an alternative collective coordinate which we denote
ass (rather than/;). We omit the details of the construction of the Hamiltonian [50] and
simply quote its form forT" 2 T,:

g , Ts? -
5 (Vi) +7+hlz—TeXp{—K[lz—5(T)S]}+"'

Hls.t:) = [ dy [22“<Vs>2+

(2.28)

which may be regarded as a refinement of (2.25). The new stiffness coeffiienemains
finite ast — 0 (as doeg) and the extent of the coupling between the two fields is controlled
by the variabled(r) o« . Using this model it is possible to show that the increment to the
CW resultfcw vanishes quadratically as — 0. If we consider sections of the wetting
phase diagram at fixed very close to7. and induce wetting by varying; (as shown in
figure 1), then the critical amplitude is predicted [50] to have a universal expansion in
t = (hy —h1)/hy about the CW result which is itself universal (sinogends to a universal
valuew, =~ 0.77 [11]). Thus we write [50]

w,
0~1+—+124... 2.29
TR (2.29)
where . is further predicted to be related to standard bulk critical amplitude ratios (see,
e.g., [59])
1 R [N\
Qo= (SO_) —. (2.30)
2t (R \& ) It

Using the best available estimates [11, 59] we find that
6 =138+04%+--.. (2.31)

These calculations implicitly assume that the wetting transition occurring, afor #7’)

is second order because they do not include the position dependence of the stiffness
coefficients. Allowing for these does not significantly alter the predictions as regards the
renormalization of the wetting parameter at complete wetting. However, application of the
coupled modelH,[l1, [5] to the critical wetting transition [49] does reveal a new effect in
addition to the possibility that the transition is of a fluctuation-induced first-order nature
(similar to the FJ theory). Specifically, calculation of the appropr&at@matrix shows that

S11 and Sy, exhibit MF-like singularities even if,, shows strong non-universality consistent
with the CW prediction. A more quantitative assessment of the influence of coupling on
the critical singularities is provided by the improved mod#ls, /5]. In particular Parry and
Swain [50] have reassessed the Ginzburg criterion and find that the true asymptotic critical
region for the local susceptibility; is much smaller than previously calculated using the
CW model. In fact the transverse correlation lengtthas to be much greater than 40—-60
lattice spacings (at the temperatures that the simulations were performed) compared with
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the CW estimate due to Halpin-Healey and Brezin [28]: > 4-8. Thus allowing for
coupling between order-parameter fluctuations near the walkbaydinterface appears to
solve our central problem 1 since the simulation studies fall well within the MF regime.

3. Ising model simulations

Binder, Landau and Ferrenberg (BLF) [54-56] have recently performed large-scale MC
simulations of a finite-size Ising model with competing surface fields. This is a different
system from the original simulation studies and in many ways is much better suited to
analysing wetting properties since they play a dominant part in determining the phase
coexistence and criticality in the finite-size geometry. In fact this was the original motivation
of BLF who set out to test the MF prediction for the phase diagram first studied by Parry
and Evans [51, 52]. To understand the relevance of the simulations to the fluctuation theory
presented in the last section we briefly recall the MF analysis, emphasizing the role of
interfacial fluctuations in the high-temperature phase.

Consider a parallel-plate geometry of infinite area and wiithWe suppose that the
spins in the planes = 0 andz = D are subject to surface fields and —#,, respectively.
The Landau theory expression for the free energy is taken to be

2
Flm(r)] = f dy / d: [;(me +ém) + (C’Z _ mhl) 5(2)

2
+ (C’Z 4 mh1> 8(z — D)} (3.1)

and is minimized to find the equilibrium magnetization. We suppose that each semi-infinite
surface is critically wetted by the appropriate bulk phase at a temperafuréVe also
impose an Ising symmetry so thatg = —m,. Owing to the competitive nature of the
surface fields the walls at= 0 andz = D preferentially adsorb a different phase leading
to frustration effects in the finite-size geometry. A section of the phase diagram (in zero
bulk field) is shown in figure 3. For temperatures less than a finite-size critical value,
two distinct phases coexist in the system. These correspond to having thin wetting films
of «-phase ang3-phase at the left-hand side and right-hand side walls, respectively (see
inset). As the temperature is increased, the difference between the total magnetization (per
unit area) of the two phases diminishes (because the wetting films grow at each wall) and
vanishes aff, (D). The MF analysis predicts that the critical temperature is shifted (owing
to finite-size effects) belowW,:

T, — To(D) ~ exp(—k D/2) (3.2)
where scaling arguments suggest that the right-hand side is to be interprefgd/ds
The second-order phase transition occurring &aD) and. = 0 is predicted to belong to
the (d — 1)-dimensional bulk Ising universality class. The intriguing feature here is that
in the limit D — oo the critical point of the finite-size system does not tend to bk
Whilst this scenario was initially queried [53], subsequent analyses [54] have confirmed
this as the correct interpretation. Crucial to a full understanding of these rather dramatic
finite-size effects is the nature of the fluctuations in the temperature wifflowT > T,.
This is the regime where bulk phase coexistence has been completely suppressed and the
magnetization profile resembles @ang interface located at the centre of the system. Within
MF theory, calculation of the midpoint susceptibility shows that the transverse correlation
length is exponentially large [52], i.e.

&) ~ expk D/4) (3.3)
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Figure 3. Schematic diagram showing typical phases in a parallel-plate geometry with competing
surface fields as a function of temperature. Each semi-infinite surface shows a critical wetting
transition at7,,.

and diverges a®D — oo. One may understand the MF result using a simple binding
potential W (I; D) appropriate for an interface confined between two walls

W(l; D) = —t{exp(—«t1) + exp[—« (D — )]} + b{exp(—2«1) + exp[-2« (D — D]} (3.4)

from which one can easily rederive (3.2) and (3.3).

With these MF ideas in mind, BLF studied thin Ising films of widthranging from
6 to 28 (lattice spacings) and large transverse dreavhere L may be as large as 256.
The surface fields are chosen such that~ 0.97. (much higher tharfk). BLF then seek
answers to the following questions.

(a) Are the qualitative features of the MF phase diagram correct?
(b) Is there evidence of an exponentially large correlation length in the one-phase region?
(c) Is the transition af,.(D) in the two-dimensional bulk Ising universality class?

The answer to the first question is certainly yes and of significance is the observation that
the values off.(D) for the D studied all lie belowr,. If T.(D) was observed to be greater
than T,, (for sufficiently largeD), this would be indicative that the wetting transition was
very weakly first order but there appears to be no indication of this in the new simulations.

From measurements of the local susceptibilifigs= 0m,, /0h and x,,, = dm,,/dh,, [60]
(wheren is the layer number), BLF show that there is clear evidence for an exponentially
large correlation length fof. > T > T,. Indeed BLF are able to extract a length scale
k7; defined by

egy = 2 lim (W) (3.5)

— 00
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which, according to the MF prediction, should be equal to the bulk correlation langth
Here maxy,, is the maximum value of,, measured as a function af Note that the
maximum occurs in the middle of the system (as expected) so that the data used are taken
from measurements local to the g interface (in contrast with the earlier simulation studies).
BLF observed that the measured valuesg} are considerably larger than the Ising model
bulk correlation lengtit ~* and speculated that this has implications for theories of wetting.
In fact, as pointed out by Boulter and Parry [42,44] this observation is consistent with
interfacial fluctuation effects described by the two-field model. They show that beyond MF
the prediction (3.3) should be replaced by

£ ~ expk D/49) (3.6)
whered is the complete wetting critical amplitude discussed earlier. This has been further
developed by Parrgt al [47] who plot the measured values @fversusT obtained using
the trivial relation6 = «/«.rr and is shown in figure 4. Recall that the CW prediction
(assuming thatv ~ 0.8) 6cww ~ 1.4 and compares badly with the data. However, the
predictions of the two-field theory appear to describe the measurements rather well. The
value of6 is certainly greater than 1.4 f@ > T,, and is consistent with the rough estimate
[42] 6 ~ 1.8 for T > T,. Parryet al [47] pointed out that the extrapolated valueéofor
T — T, allows one to extract a value(T = T,,) ~ 0.84. This is in very good agreement
with the series expansion prediction [11] at this temperature.

Finally we comment on the final question concerning the nature of the phase transition
occurring atT,. (D) which BLF were not able to answer in their original study. The difficulty
here is that the size of the true asymptotic critical regime is extremely small. However,
in a subsequent reanalysis of their original data, Binelerl [57] show that both the
susceptibility and the cumulant ratio exhibit crossover finite-size scaling behavidurat
which manifests the required universality. The scaling analysis is rather subtle since it has
to account for the presence of several different length scales associated with the fusion of
different critical singularities in the finite-size system. In particular the data collapse onto
universal curves is achieved only if the value of the effective length scajeis chosen
to coincide with the theoretical prediction incorporating the coréedependence. This is
perhaps the most convincing evidence yet that the nature of interfacial fluctuations in the
three-dimensional Ising model are understandable using effective Hamiltonian ideas.

4. Conclusions

In the introduction we stated two problems faced by the CW theory of wetting and
have argued that they are both related to the inability of the CW model to account
for coupling of order-parameter fluctuations at #eg interface and wall. Problem 2
concerning the structure of MF correlation functions at the complete wetting transition is
certainly understandable using the generalized effective Hamiltonian theory which provides
an alternative method of calculating correlation functions complementing standard methods
[7,9]. This approach leads to some new relations and in particular the stiffness-matrix—free-
energy relation which is central to the thermodynamic consistency of the method.

The FJ model and the coupled Hamiltonians lead to new predictions for fluctuation
effects at wetting transitions for three-dimensional systems with short-ranged forces. The
most important of these are as follows.

(a) The bare (MF) critical wetting transition may be driven first order for sufficiently
small values ofw. Whilst this alone is not enough to explain problem 1, it may be that
transition in the Ising model is very weakly first order. Further simulations have been
suggested that might resolve this issue [61].
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Figure 4. Plot of the critical amplitude ratié as extracted from the data of BLF. The value of

6 is larger than the CW predictiofcyw but extrapolates to it a8 — 7,7 consistent with the
predictions of the coupled theory. Cubic and linear fits to the data are shown as broken and
solid curves respectively together with their points of extrapolation. (Diagram taken from Parry
et al [47].)

(b) The value of the critical amplitudeé at complete wetting is greater than the CW
and FJ predictions. This appears to be in good agreement with the simulation studies of
Binder et al [55, 56].

(c) The values of) — 1+ w/2 asT — T,! yielding w = 0.8, in excellent agreement
with long-standing expectations.

(d) Because of the coupling, the true critical region for the local susceptibylitat
critical wetting is very small. This would seem to provide a quantitative explanation of
problem 1.

(e) For critical and complete wetting transitions occurring close to the bulk critical
temperaturd’, the critical properties are predicted [50] to depend on two universal amplitude
ratios w, and Q.. Thus whilstw, controls the correlation length critical exponentfor
critical wetting, bothw, and Q2. determine the size of the critical region. Similay and
Q. enter into the expression for the renormalized wetting parametgrcomplete wetting.

The role of the second amplitude. does not emerge in the CW (and FJ) models and only
appears in coupled theories if the fluctuations at the wall are treated in a careful manner
beyond that of the two-field mode¥,[l1, I].

Having said this, much of what has been achieved (with some effort) is still largely
supportive of the CW picture. Thus the original critical wetting predictions of Bretin
al [13] and Lipowskyet al [14] concerning the dramatic renormalization of the correlation
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length exponent still stand for sufficiently large valueswofvhich may well be appropriate

to the Ising model. In the light of the predictions of the coupled theory, however, any
future simulation studies aimed at observing this criticality should make sure that their
measurements of response functions, etc, are made as localdeAtiaterface as possible

if they are to avoid the problems of the earlier simulations.

The new effective Hamiltonian that have been put forward may all be regarded as small
amendments to the CW theory which only lead to new critical properties at the upper critical
dimension. Nevertheless, because the upper critical dimension for critical and complete
wetting transitions in systems with short-ranged forces is the physical dimensionality of
space, this is an important case. Moreover, despite the fact that at an experimental level
it seems difficult to avoid the effect of long-ranged dispersion forces for traditional solid—
liquid and liquid—liquid interfaces, the same is probably not true of wetting in metallic,
superconducting [62] and polymer systems which may well have effective short-ranged
forces. Indeed recent experiments involving adsorbed polymer blends have already made
encouraging contact with some of the theoretical predictions of the last section [63].
Hopefully future simulation and experimental studies will be able to test them in more
detall.
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